HOT NEWS

IN HEMATOLOGY Sindromi linfoproliferative ed oltre...

MACROGLOBULINEMIA DI WALDENSTROM

Alessandra Tedeschi Division of Hematology Niguarda Hospital, Mllano

WM TREATMENT

MYD88 in WM

- ~ 95% of WM patients carry the somatic mutation of MYD88 (L265P)
- MYD88, IRAK1/IRAK4 and BTK are components of the Myddosome complex that activates NFKB
- Mutated MYD88 upregulates hematopoietic cell kinase (HCK) transcription and activates HCK via II-6. Activated HCK promotes survival through BTK, PI3K/AKT and MAPK/ERK1/2
- Evidence of cross talk between mutated MYD88 and BCR pathway with SYK activation that triggers STAT3 and AKT prosurvival signaling

CXCR4 in WM

- Over 30 nonsense (NS) or frameshift (FS) C-tail mutations
- The most common CXCR4 mutation is S338X (~ 50% of all CXCR4 mutations)
- Similar to germline mutations typical of WHIM syndrome
- Detected in 30-40% of WM patients, and usually associated with MYD88

mutations

PATIENTS WITH CXCR4 mutations

- ✓ higher IgM levels
- ✓ higher incidence of hyperviscosity
- ✓ higher BM infiltration
- ✓ shorter time to first treatment

Treon SP et al, 2014; Poulain S et al, 2016; Schmidt J et al, 2015; Treon SP et al, 2015.

WM TREATMENT

PFS according to MYD88 & CXCR4 mutation status

Bortezomib Rituximab First Line according to CXCR4

WM: Genomic based treatment algorithm

Treon et al. JCO 2020

Rituximab Combination Treatment

Response and survival for primary therapy and maintenance rituximab

Castillo et al, 2009-2019

Ibrutinib° in MYD88^{mut} Acalabrutinib Aspen trial in MYD88^{mut} median follow-up time of 50.1 m median follow-up time of 19.4 m n=30 100 ORR 93% 100% 100% TN 90 80% 80% Maio 80 Zanubrutinib Ibrutinib CR Major 60% response 87% 60% 78% 70 (n = 18)(n = 19)VGPR 94% 60 40% 40% Best overall response, n (%) PR MRR 50 CR 0 (0) 0 (0) 79% MR 20% 20% 40 VGPR 3 (17) 5 (26) 0% PR 9 (50) 9 (47) 0% 30 All CXCR4 WT CXCR4 MUT MR 4 (22) 4 (21) 20 MR PR VGPR MR PR VGPR SD 1 (6) 0 (0) 10 PD 0 (0) 1 (5) Median time to Major Response: 1.9 m 0 Not evaluable* 1 (1) 0 (0) Median longer for pts with: TN (n=14) Ĩ Response rates, % (95% CI)† CXCR4^{mut} 7.3 m p = 0.02 17 (4-41) 26 (9-51) VGPR or CR CXCR4^{wt} 1.8 m 1.0 NR H TN MRR 67 (41-87) 74 (49-91) 0.8 ORR 89 (65-99) 95 (74-100) 1.00 L Duration of CR/VGPR, mo 0.75 0.6 NE (0+, 3+) NE (0+, 22+) Median (range) 18-Mo event-free rate, % (95% CI)§ NE (NE, NE) 100 (NE, NE) 0.50 0.4 Log-rank p=0.06 PFS Duration of major response, months 24-month PFS rate (95% CI): 0.25 NE (3+, 28+) NE (0+, 25+) Median (range) 0.2 -• TN = 90.0% (47.3–98.5) 18-Mo event-free rate, % (95% CI)§ 00 (NE, NE) 80 (39-95) 0.00 Years from ibrutinib initiation PFS Number at risk CXCR4 WT 16 CXCR4 MUT 14 0.0 14 11 10 5 13 10 11 8 0 Median (range), mo NE (0+, 31+) NE (1, 31+) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 18-Mo event-free rate, % (95% CI)§ 94 (63-99) 78 (52-91) CXCR4 wildtype ---- CXCR4 mutated Time (months) Castillo et al., 2021 Owen RG et al., 2020 Tam CS et al., 2020

BTKi*

° approved by EMA in unfit PTS not reimbursed in Italy

Rituximab combination treatments

Effective, Long Time to Retreatment

Fixed duration

Myelosuppression/Immunosuppression

BTKi

Effective, prolonged PFS

Continuous treatment

Rituximab mono

ORR 44-65%

Short PFS

Effective in specific IgM related sisease symptoms

> Gertz et al , 2009 Dimopoulous et al, 2010

Lancet Haematol 2020; 7: e827–37

Consensus treatment recommendations from the tenth International Workshop for Waldenström Macroglobulinaemia

Jorge J Castillo, Ranjana H Advani, Andrew R Branagan, Christian Buske, Meletios A Dimopoulos, Shirley D'Sa, Marie José Kersten, Veronique Leblond, Monique C Minnema, Roger G Owen, M Lia Palomba, Dipti Talaulikar, Alessandra Tedeschi, Judith Trotman, Marzia Varettoni, Josephine M Vos, Steven P Treon, Efstathios Kastritis

- CONSENSUS that CDR, or bendamustine plus rituximab, BDR ibrutinib alone, and ibrutinib plus rituximab - are preferred options as primary therapy
 - these regimens can also be used in the management of relapsed or refractory pts
- NO consensus on which treatment regimen provides the best safety and efficacy profile. central to this lack of consensus is the absence of prospective randomised studies
- NO consensus on the recommendations for fixed or indefinite duration regimens
- CONSENSUS that there are currently noconvincing data to recommend the combination of ibrutinib and rituximab over ibrutinib alone.

THE CHOICE OF PRIMARY AND SUBSEQUENT THERAPY SHOULD BE PERSONALISED CONSIDERING THE: TOXICITY PROFILE

ADMINISTRATION SCHEDULE AND ROUTE DRUG ACCESSIBILITY PTS PREFERENCE

Ibrutinib Phase II study

Baseline characteristics (ibrutinib n=63):

- Median age: 63 (44-86) yrs
- Median n° of prior therapies: 2 (1-9)
- ➤ 40% pts refractory to most recent therapy
- Median bone marrow involvement: 60%

Variable	All	MYD88 ^{™ut} CXCR4 ^{™T}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{wt} CXCR4 ^{wt}	Р
No. of patients	63	36	22	4	
Overall response rate	57 (90.5)	36 (100.0)	19 (86.4)	2 (50.0)	< .0100
Major response rate	50 (79.4)	35 (97.2)	15 (68.2)	0 (0.0)	< .0001
Categorical responses					
No response	6 (9.5)	0 (0.0)	3 (13.6)	2 (50.0)	< .0001
Minor response	7 (11.1)	1 (2.8)	4 (18.2)	2 (50.0)	
Partial response	31 (49.2)	18 (50.0)	13 (59.1)	0 (0.0)	
Very good partial response	19 (30.2)	17 (47.2)	2 (9.1)	0 (0.0)	
Median time to response, months					
Major response (≥ partial response)	1.8	1.8	4.7	NA	.0200

NOTE. Data presented as No. (%). Response rates, including categorical responses and median time to attainment of least a minor and a major response for all patients and those stratified by *MYD88* and *CXCR4* mutation status, are provided. *P* values denote three-way comparisons among genomic cohorts.

Abbreviations: Mut, mutant; NA, not applicable; WM, Waldenström macroglobulinemia; WT, wild type.

Ibrutinib Phase II study

Median study follow-up: 59 months

presence of MYD88w, and CXCR4Mut disease
were significant predictors for shorter PFS

Treon SP et al. J Clin Oncol 2021

Innovate Study: Ibrutinib plus R vs Placebo plus R (Innovate study)

Ibrutinib Toxicity

Second generation BTKi

Kinase Selectivity Profiles

Kinase	Ibrutinib	Acalabrutinib	Zanubrutinik
BTK	1.5	5.1	0.5
TEC	10	126	44
ITK	4.9	>1000	50
BMX	0.8	46	1.4
EGFR	5.3	>1000	21
ERBB4	3.4	16	6.9
JAK3	32	>1000	1377
BLK	0.1	>1000	2.5

Kaptein. ASH 2018. Abstr 1871.

ASPEN STUDY: Zanubrutinib vs Ibrutinib

Primary endpoint:

superiority of zanubrutinib in terms of CR or VGPR, per modified IWWM6, by independent review

WM=Waldenström's macroglobulinemia, BID=twice daily, CR=complete response, ITT=intent-to-treat, MRR=major response rate, MUT=mutation, PD=progressive disease, PFS=progression-free survival, PR=partial response, QD=once daily, R=randomization, R/R=relapsed/refractory, TN=treatment naïve, VGPR=very good partial response, WM=Waldenström's macroglobulinemia, WT=wild type.

Phase 1/2 BGB-3111-AU-003 Study Efficacy Results

	TN (n = 24)	R/R (n = 49)	Total (N = 73)
Duration of follow-up, median, mo	23.5	35.8	30.3
Best overall response, n (%) CR VGPR PR MR SD PD	0 8 (33.3) 13 (54.2) 3 (12.5) 0 0	1 (2.0) 24 (49.0) 14 (28.6) 7 (14.3) 3 (6.1) 0	1 (1.4) 32 (43.8) 27 (37.0) 10 (13.7) 3 (4.1) 0
VGPR/CR rate, % (95% CI)	33.3 (15.6-55.3)	51.0 (36.3-65.6)	45.2 (33.5-57.3)
VGPR/CR rate by genotype, % (95% Cl) MYD88 ^{L2659} /CXCR4 ^{WHT} (n = 39) MYD88 ^{L2659} /CXCR4 ^{WHIM} (n = 11) MYD88 ^{L2659} /CXCR4 ^{PS} (n = 6) MYD88 ^{L2659} /CXCR4 ^{NS} (n = 5) MYD88 ^{WT} (n = 8)			59.0 (42.1-74.4) 27.3 (6.0-61.0) 33.3 (4.3-77.7) 20.0 (0.5-71.6) 25.0 (3.2-65.1)
ORR (MR or better), % (95% CI)	100.0 (85.8-100.0)	93.9 (83.1-98.7)	95.9 (88.5-99.1)
MRR (PR or better), % (95% CI)	87.5 (67.6-97.3)	79.6 (65.7-89.8)	82.2 (71.5-90.2)

VGPR/CR Rate Increases Over Time (R/R Pts WM Cohort)

Trotman et al 2020

• Superiority in

significant

CR + VGPR rate for

hypothesis) was not

zanubrutinib compared

with ibrutinib in the R/R

ASPEN STUDY: Zanubrutinib vs Ibrutinib Efficacy According to IRC

Best overall response in the ITT population*

Overall concordance between IRC and investigators = 94%. *Data cut-off: August 31, 2019. ‡Adjusted for stratification factors and age group.

CR, complete response; IRC, independent review committee; ITT, intention-to-treat; MR, minor response; MRR, major response rate; ORR, overall response rate; PD, progressive disease, PR, partial response;

R/R, relapsed/refractory; SD, stable disease; VGPR, very good partial response.

Tam CS et al. Abstract 8007 presented at the 2020 American Society of Clinical Oncology (ASCO) Annual Meeting (virtual): May 29-31, 2020.

Tam CS et al., 2020

ASPEN STUDY: Zanubrutinib vs Ibrutinib Efficacy According to Investigators

IgM reduction: AUC for IgM reduction over time was significantly greater for zanubrutinib vs. ibrutinib (P=0.037)

*Excluded 2 patients with VGPR by IRC: MR (extramedullary disease present) and PR (immunoglobulin M assessment by local serum protein electrophoresis M-protein test). AUC, area under the curve; CR, complete response; IgM, immunoglobulin M; MR, minimal response; PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good partial response.

Zanubrutinib vs Ibrutinib: Duration of major response and CR/VGPR

• CR, complete response; VGPR, very good partial response.

Tam CS et al., Blood 2020

Category, n (%)	Zanubrutinib (n=101)	lbrutinib (n=98)
Patients with ≥1 AE	98 (97.0)	97 (99.0)
Grade ≥3	59 (58.4)	62 (63.3)
Serious	40 (39.6)	40 (40.8)
Fatal AEs	1 (1.0)*	4 (4.1) [‡]
AEs leading to treatment discontinuation	4 (4.0) [†]	9 (9.2) [§]
AEs leading to dose reduction	14 (13.9)	23 (23.5)
AEs leading to dose held	47 (46.5)	55 (56.1)
Patients with ≥1 treatment-related AE	80 (79.2)	84 (85.7)
Patients with ≥1 AE of interest	86 (85.1)	81 (82.7)

Zanubrutinib vs Ibrutinib: Tollerability

*Cardiac arrest after plasmapheresis. [†]G5 cardiac arrest after plasmapheresis; G4 neutropenia; G4 subdural hemorrhage; G2 plasma cell myeloma. [‡]Cardiac failure acute; sepsis (n=2); unexplained death. [§]G5 sepsis (n=2); G5 unexplained death; G3 acute myocardial infarction; G3 hepatitis; G3 pneumonia; G2 drug-induced liver injury; G2 pneumonitis; G1 pneumonitis.

• AE, adverse event.

Zanubrutinib vs Ibrutinib: AE of interest

Event preferred term, n (%)	All grades (≥20%)		Grade ≥3 (≥5%)		
	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)	
Atrial fibrillation/Flutter	18 (18.4)	3 (3.0)	7 (7.1)	0 (0.0)	
Diarrhea (PT)	32 (32.7)	22 (21.8)	2 (1.0)	3 (3.0)	
Hemorrhage	59 (60.2)	51 (50.5)	9 (9.2)	6 (5.9)	
Major hemorrhage	10 (10.2)	6 (5.9)	9 (9.2)	6 (5.9)	
Hypertension	20 (20.4)	13 (12.9)	15 (15.3)	8 (7.9)	

Months

AE, adverse event; CI, confidence interval; PT, preferred term

Tam CS et al., Blood 2020

Zanubrutinib in MYD88^{wt}

BID, twice a day; CI, confidence interval; CR, complete response; IRC, independent review committee; MR, minimal response; MRR, major response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; pts, patients; R/R, relapsed/refractory; SD, stable disease; TN, treatment-naive; VGPR, very good partial response; WM, <u>Waldenström's</u> macroglobulinemia; WT, wild-type..

Dimopoulos M et al. 2020

WHAT COMES NEXT IN WM?

Proteasome inhibitors

WHAT COMES NEXT IN WM?

Venetoclax Monotherapy

Castillo et al 2021

WHAT COMES NEXT IN WM?

HOT NEWS IN WM CONCLUSIONS

Conclusions

FIRST LINE

- The choice of primary therapy should be personalized (consider toxicity, patients and disease characteristics)
- Allthough there is a lack of of prospective randomised studies consensus that DRC or Bendamustine Rituximab are preferred options
- Monotherapy may be a choice in unfit patients (BTKi)

RELAPSED/REFRACTORY

- BTKi best salvage regimens
 - Zanubrutinib: better tolerability=adhererence dose intesnity
- Everyday clinical practice: Lack of salvage regimens after BTKi failure!!!!